21xrx.com
2025-03-22 08:24:53 Saturday
文章检索 我的文章 写文章
Java开发实例:使用Java实现基本的决策树算法
2023-06-12 12:57:41 深夜i     --     --
Java编程 决策树算法 机器学习

在机器学习领域中,决策树是一种常用的算法,常用于分类和回归问题。在这里,我们将使用Java语言实现一个基本的决策树算法。

在这个实例中,我们将使用一个基于波士顿房价数据集的分类问题。我们首先需要获取数据集并解析其内容。这里我们用到了Java自带的CSV解析库,代码如下:

java
Reader reader = Files.newBufferedReader(Paths.get("data.csv"));
CSVParser parser = new CSVParser(reader, CSVFormat.DEFAULT.withHeader());
List
  data = new ArrayList<>();
 
for (CSVRecord record : parser) {
  double[] instance = new double[record.size() - 1];
  for (int i = 0; i < instance.length; i++) {
    instance[i] = Double.parseDouble(record.get(i));
  }
  data.add(instance);
}

接下来,我们定义一个类来表示决策树的节点,并在其中实现建树的算法,代码如下:

java
class DecisionTreeNode {
  int featureIndex = -1;
  double threshold = 0.0;
  DecisionTreeNode left = null;
  DecisionTreeNode right = null;
  int label = -1;
  public static DecisionTreeNode buildTree(List
  data, int depth) {
 
    DecisionTreeNode node = new DecisionTreeNode();
    double[] labelCounts = new double[NUM_LABELS];
    for (Double[] instance : data) {
      labelCounts[instance[instance.length - 1].intValue()]++;
    }
    int maxLabel = argmax(labelCounts);
    if (labelCounts[maxLabel] == data.size() || depth == MAX_DEPTH)
      node.label = maxLabel;
      return node;
    
    double bestScore = -1.0;
    int bestIndex = -1;
    double bestThreshold = 0.0;
    for (int i = 0; i < data.get(0).length - 1; i++) {
      double[] classCounts1 = new double[NUM_LABELS];
      double[] classCounts2 = new double[NUM_LABELS];
      int count1 = 0;
      int count2 = 0;
      for (Double[] instance : data) {
        if (instance[i] < threshold) {
          classCounts1[instance[instance.length - 1].intValue()]++;
          count1++;
        } else {
          classCounts2[instance[instance.length - 1].intValue()]++;
          count2++;
        }
      }
      double score = giniImpurity(classCounts1, count1) * count1 / (count1 + count2)
          + giniImpurity(classCounts2, count2) * count2 / (count1 + count2);
      if (score > bestScore)
        bestScore = score;
        bestIndex = i;
        bestThreshold = threshold;
      
    }
    node.featureIndex = bestIndex;
    node.threshold = bestThreshold;
    List
  data1 = new ArrayList<>();
 
    List
  data2 = new ArrayList<>();
 
    for (Double[] instance : data) {
      if (instance[bestIndex] < bestThreshold) {
        data1.add(instance);
      } else {
        data2.add(instance);
      }
    }
    node.left = buildTree(data1, depth + 1);
    node.right = buildTree(data2, depth + 1);
    return node;
  }
}

最后,我们使用上述代码来构建决策树,并对新实例进行分类,代码如下:

java
DecisionTreeNode root = DecisionTreeNode.buildTree(data, 0);
double[] instance = new double[] 0.078;
int predictedLabel = classify(root, instance);
System.out.println(predictedLabel);

本次实例使用的数据集可以从以下链接中获取:https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data

  
  

评论区