21xrx.com
2024-11-22 03:59:42 Friday
登录
文章检索 我的文章 写文章
Java编程中最难的算法及解决方案
2023-06-17 04:34:41 深夜i     --     --
Java算法 旅行推销员问题 贪心算法 遗传算法

Java作为一种广泛应用的编程语言,在日常开发中不可避免地会遇到各种各样的算法问题。对于初学者来说,编写基本的程序可能并不困难,但是能够高效地解决复杂的算法问题需要极高的技能和经验。在众多Java算法中,哪一种算法被认为是最难的呢?

Java中最具挑战性的算法之一是“旅行推销员问题”,因为它需要使用精密的算法来确定最佳旅行路线。该问题的解决方案被认为是NP难问题,既不存在时间复杂度为O(n)的完美解决方案。 然而,在实际应用中,我们可以通过一些优化算法来提高程序的效率。

以下是使用贪心算法和遗传算法解决旅行推销员问题的代码案例。贪心算法是将决策过程分解为多个子问题,并每次选择局部最优解,直到达到全局最优解。遗传算法是借助生物学中的遗传进化规律,通过种群选择、交叉和变异等步骤,不断优化并找到最佳解决方案。

贪心算法代码:


public class TravelingSalesman {

 public static int MINIMUM_DISTANCE = Integer.MAX_VALUE;

 public static int[] SOLUTION;

 public static void permutation(int[] arr) {

  permute(arr, 0);

 }

 private static void permute(int[] arr, int pos) {

  if (pos == arr.length) {

   evaluate(arr);

  }

  else {

   for (int i = pos; i < arr.length; i++) {

    swap(arr, pos, i);

    permute(arr, pos+1);

    swap(arr, pos, i);

   }

  }

 }

 private static void evaluate(int[] arr) {

  int sum = 0;

  for (int i = 1; i < arr.length; i++) {

   sum += Math.abs(arr[i] - arr[i-1]);

  }

  if (sum < MINIMUM_DISTANCE) {

   MINIMUM_DISTANCE = sum;

   SOLUTION = arr.clone();

  }

 }

 private static void swap(int[] arr, int pos1, int pos2) {

  int temp = arr[pos1];

  arr[pos1] = arr[pos2];

  arr[pos2] = temp;

 }

 public static void main(String[] args) {

  int[] arr = {1, 2, 3};

  permutation(arr);

  for (int i = 0; i < arr.length; i++) {

   System.out.print(SOLUTION[i] + " ");

  }

 }

}

遗传算法代码:


public class GeneticAlgorithm {

 public static void main(String[] args) {

  Random rand = new Random();

  int population_size = 100;

  int num_generations = 100;

  int gene_length = 5;

  int num_crossover = 50;

  int num_mutations = 50;

  int target = 16;

  int[][] population = new int[population_size][gene_length];

  for (int i = 0; i < population_size; i++) {

   for (int j = 0; j < gene_length; j++) {

    population[i][j] = rand.nextInt(2); // randomly initialize genes

   }

  }

  for (int i = 0; i < num_generations; i++) {

   int[][] mating_pool = selection(population, target);

   int[][] offspring = crossover(mating_pool, num_crossover);

   mutation(offspring, num_mutations);

   population = merge(population, offspring);

  }

  int[] best_gene = population[0];

  int best_distance = evaluate(best_gene, target);

  for (int i = 1; i < population_size; i++) {

   int distance = evaluate(population[i], target);

   if (distance > best_distance) {

    best_distance = distance;

    best_gene = population[i];

   }

  }

  System.out.println("Best gene: " + Arrays.toString(best_gene));

  System.out.println("Best distance: " + best_distance);

 }

 private static void mutation(int[][] offspring, int num_mutations) {

  Random rand = new Random();

  for (int i = 0; i < num_mutations; i++) {

   int parent = rand.nextInt(offspring.length);

   int position = rand.nextInt(offspring[0].length);

   offspring[parent][position] ^= 1;

  }

 }

 private static int[][] crossover(int[][] mating_pool, int num_crossover) {

  int[][] offspring = new int[num_crossover][mating_pool[0].length];

  Random rand = new Random();

  int parent1, parent2;

  for (int child = 0; child < num_crossover; child++) {

   parent1 = rand.nextInt(mating_pool.length);

   parent2 = rand.nextInt(mating_pool.length);

   int crossover_point = rand.nextInt(mating_pool[0].length - 1);

   for (int i = 0; i <= crossover_point; i++) {

    offspring[child][i] = mating_pool[parent1][i];

   }

   for (int i = crossover_point + 1; i < offspring[0].length; i++) {

    offspring[child][i] = mating_pool[parent2][i];

   }

  }

  return offspring;

 }

 private static int[][] selection(int[][] population, int target) {

  Random rand = new Random();

  int[][] mating_pool = new int[population.length][population[0].length];

  for (int i = 0; i < population.length; i++) {

   int parent1 = rand.nextInt(population.length);

   int parent2 = rand.nextInt(population.length);

   if (evaluate(population[parent1], target) > evaluate(population[parent2], target)) {

    mating_pool[i] = population[parent1];

   }

   else {

    mating_pool[i] = population[parent2];

   }

  }

  return mating_pool;

 }

 public static int evaluate(int[] genes, int target) {

  int value = 0;

  for (int i = 0; i < genes.length; i++) {

   if (genes[i] == 1) {

    value += (int) Math.pow(2, genes.length -1 - i);

   }

  }

  return Math.abs(target - value);

 }

 private static int[][] merge(int[][] population, int[][] offspring) {

  int[][] merged = new int[population.length + offspring.length][population[0].length];

  for (int i = 0; i < population.length; i++) {

   merged[i] = population[i];

  }

  for (int i = population.length; i < population.length + offspring.length; i++) {

   merged[i] = offspring[i - population.length];

  }

  return merged;

 }

}

  
  

评论区

{{item['qq_nickname']}}
()
回复
回复